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Abstract

An analytical solution is investigated for forced convection heat transfer from a laminar plane wall jet as conjugate

case. For Re� 1, boundary layer theory is used for the investigation. The problem has been solved for two classic cases

such as Pr P 1 and Pr � 1. The conjugate model consists of considering the full Navier–Stokes equation in the fluid

medium and coupling of energy equations in the fluid and the slab through the interface boundary conditions. Closed-

form relations are found for Nusselt number (Nu), average Nusselt number ðNuÞ and conjugate interface boundary tem-

perature (hb). The effects of the Reynolds number (Re), the Prandtl number (Pr), the thermal conductivity ratio (k)

between the slab and the fluid medium and the slab aspect ratio (k) are investigated on the heat transfer characteristics.

The analytical results are compared with the full numerical results.

� 2005 Elsevier Ltd. All rights reserved.

Keywords: Plane wall jet; Conjugate heat transfer; Computation
1. Introduction

A conjugate heat transfer problem occurs when the

fluid regime is coupled with the conducting solid wall

of finite thickness. The temperature and the heat fluxes

at the solid-fluid interface are considered to be equal.

This is referred to as the fourth-kind boundary condition

[1]. Conjugate heat transfer is involved in many applica-

tions like high speed jet engines, electronics cooling, film

cooling of turbine blades, extrusion of materials, etc.

Many publications are devoted to conjugate heat

transfer on flat plate [2–6]. Chiu et al. [7] studied conju-

gate heat transfer of horizontal channel both experimen-
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tally and numerically. They showed the effects of

conjugate heat transfer with non-conjugate results.

Rao et al. [8] presented the results for laminar mixed

convection with surface radiation from a vertical plate

with a heat source as conjugate case. Jilani et al. [9] have

solved conjugate heat transfer from a heat generating

vertical cylinder.

Glauert [10] defined plane wall jet as a stream of fluid

blown tangential along a plane wall. Similarity solution

for plane wall jet as well as radial wall jet for both lam-

inar and turbulent cases were presented with the intro-

duction of Glauert constant �F�. Schwarz and Caswell

[11] have investigated the heat transfer characteristics

of a two-dimensional laminar incompressible wall jet.

They found exact solutions for both constant wall tem-

perature and constant heat flux cases. In addition, they

have solved for variable starting length of the heated
ed.
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Nomenclature

A constant

a thickness of the slab, m

b length of the slab, m

h inlet slot height, m

i x-direction grid point

j y-direction grid point

kf thermal conductivity of the fluid, W/m K

ks thermal conductivity of the slab, W/m K

k thermal conductivity ratio, ks/kf
Nu local Nusselt number

Nu average Nusselt number

n normal direction

Pr Prandtl number, m
a

Q constant

Re Reynolds number for the fluid

Tc constant bottom wall temperature, �C
T1 constant ambient temperature, �C
t non-dimensional time

u, v dimensional velocity components along

(x,y) axes, m/s

û; v̂ dimensionless velocity components along

(x,y) axes

�u inlet mean velocity, m/s

U1 ambient velocity of fluid, m/s

x, y dimensional Cartesian co-ordinates along

and normal to the plate, m

x̂; ŷ dimensionless Cartesian co-ordinates (x,y)/b

Greek symbols

a thermal diffusivity, m2/s

c constant

DT temperature difference, Tc � T1, �C
e convergence criterion

f similarity variable

h0 constant
�hb dimensionless average boundary tempera-

ture

hb dimensionless boundary temperature

hs dimensionless temperature in the solid wall

j clustering parameter

k aspect ratio a/b

m kinematic viscosity, m2/s

r dimensionless constant

s dimensionless constant

v constant

w dimensionless stream function

x dimensionless vorticity

Subscripts

b interface

f fluid

s solid

w wall

1 ambient condition
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section at constant wall temperature. The solution was

derived with the plate and jet regimes as non-conju-

gated. Angirasa [12] has studied laminar buoyant wall

jet and reported the effect of velocity and the width of

the jet during convective heat transfer from the vertical

surface.

Amitay and Cohen [13] have reported the effects of

wall blowing and suction on the stability characteristics

of a laminar incompressible two-dimensional plane wall

jet. Cohen et al. [14] did work on transition of wall jets

subjected to blowing and suction. Quintana et al. [15]

experimentally investigated the mean and fluctuating

characteristics of a plane unsteady laminar wall jet for

constant wall temperature. Seidel [16] has done numeri-

cal work to find the effect of high amplitude forcing on

laminar and turbulent wall jet over a heated flat plate.

Seidel has used DNS for laminar case and RANS for tur-

bulent wall jet. Recently, Bhattacharjee and Loth [17]

simulated laminar and transitional cold wall jets. They

investigated the significance of three different inlet pro-

files viz. parabolic, uniform and ramp. They presented

the detailed results of time-averaged wall jet thickness
and temperature distribution with RANS approach for

higher Reynolds number and DNS approach for three-

dimensional wall jet. Vynnycky et al. [6] have presented

an analytical solution of two-dimensional conjugate heat

transfer problem of laminar boundary layer over a flat

plate for both high Pr as well as low Pr. They have vali-

dated their analytical results with the numerical results.

The present study is motivated by the cooling of

heated slabs due to laminar plane wall jet flow. These

type of conjugate heat transfer situations are found in

electronics cooling, refrigerated air curtain, paper indus-

try, electrical motor cooling, etc. Here, a conjugate heat

transfer by a two-dimensional laminar plane wall jet

flow over a solid slab has been considered. An analytical

solution has been presented for Pr � 1 and Pr P 1 cases

with k, Re and k as the parameters. The analytical solu-

tion has been compared and validated with a numerical

solution. For this purpose, the problem has also been

solved numerically with stream function-vorticitymethod

considering it to be an unsteady-state formulation. The

integration in time has been allowed till a steady-state

solution is obtained.
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2. Basic equations

Consider the steady two-dimensional heat transfer

over a rectangular slab of finite thickness. A jet of fluid

strikes the wall, which is submerged in the same fluid

thus developing wall jet. A schematic representation of

the domain is shown in Fig. 1. The slab thickness is

�a 6 y 6 0 and the length is �b
2
6 x 6 b

2
. The fluid has

uniform temperature and velocity at inlet (i.e. x ¼ � 1
2
).

The bottom of the wall is maintained at constant tem-

perature, Tc > T1. The other ends of the wall are ther-

mally insulated. It is assumed that the temperature

gradient of solid wall in axial direction is negligible while

comparing temperature gradient in normal direction,

which is consistent with boundary layer theory. The sur-

rounding of the fluid is assumed as quiescent regime.

Following non-dimensional variables are used to express

the problem.

x̂¼ x
b
; ŷ ¼ y

b
; û¼ u

U1

1ffiffiffiffiffiffi
Re

p ; v̂¼ v
U1

1ffiffiffiffiffiffi
Re

p ;

ŵ¼ w
bU1

; x̂¼ bx
U1

1ffiffiffiffiffiffi
Re

p ; ĥf ¼
T f � T1

DT
; ĥs ¼

T s � T1

DT
;

ð1Þ
where DT = Tc � T1 and w is the stream function which

is defined by

u ¼ ow
oy

; v ¼ � ow
ox

ð2Þ

The equations governing the vorticity and energy

transport for the fluid (dropping the hats for all the vari-

ables for clarity)

r2w ¼ �x ð3aÞ

u
ox
ox

þ u
ox
oy

¼ 1

Re3=2
r2x ð3bÞ
Fig. 1. Combination of a wall jet with solid wall: (a) schematic d
u
ohf
ox

þ u
ohf
oy

¼ 1

PrRe3=2
r2hf ð3cÞ

and for the conductive slab

r2hs ¼ 0 ð3dÞ

where $2 is the Laplacian in Cartesian co-ordinates

(x,y). The boundary conditions for Eqs. (3a)–(3d) are

w ¼ ow
oy

¼ 0 on y ¼ 0 jxj 6 1

2
ð4aÞ

hs ¼ hf ¼ 0 on y ¼ 0 jxj 6 1

2
ð4bÞ

ohf
oy

¼ k
ohs
oy

on y ¼ 0 jxj 6 1

2
ð4cÞ

ohs
oy

¼ 0 on x ¼ � 1

2
� k 6 y 6 0 ð4dÞ

hs ¼ 1 on y ¼ �k jxj 6 1

2
ð4eÞ

hf ! 0 as y ! 1 jxj 6 1

2
ð4fÞ

ow
oy

! 0 as y ! 1 jxj 6 1

2
ð4gÞ

x ! 0 as y ! 1 jxj 6 1

2
ð4hÞ

The local Nusselt number is

Nu ¼ � ohf
� �

; jxj 6 1 ð5Þ
iagram and (b) coordinate system and boundary condition.
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The average Nusselt number is defined as

Nu ¼
Z 1=2

�1=2

Nudx ð6Þ

While finding out the closed form solution for the en-

ergy equation, it is mandatory to obtain the similarity

solution for the momentum equation. The solution pro-

ceeded for two classical cases such as Pr approaches

infinity and Pr approaches zero. Pr number is the ratio

of momentum transport property and thermal transport

property of fluid in forced convection heat transfer [18].

For high Pr fluid, the thermal boundary layer thickness

is smaller than viscous boundary layer thickness and

vice versa. For Pr � 1, the viscous boundary layer can

be ignored while calculating thermal boundary layer.

Whereas for Pr P 1, within the thermal boundary layer

region velocity depends on y. Liquid metals come under

the family of Pr � 1 while oils are having Pr P 1. If the

non-dimensional temperature at entry of slab fluid inter-

face (�1/2,0) is denoted as h0, then its value varies from

0 to 1. When h0 = 0, heat is transferred to the flow at

leading edge which is a singular point. This is valid for

Pr P 1 and Pr � 1.
Pr > 1

Case I: For h0 > 0 the suitable scalings are

w ¼ Re�3=4W; x ¼ Re3=4X; y ¼ Re�3=4Y ð7Þ

With this new scalings, Eqs. (3a)–(3c) become

o2W

oY 2
¼ �X ð8aÞ

oW
oY

oX
oX

� oW
oX

oX
oY

¼ o2X

oY 2
ð8bÞ

Pr
oW
oY

ohf
oX

� oW
oX

ohf
oY

� �
¼ o2hf

oY 2
ð8cÞ

From Eqs. (8a) and (8b),we eliminate X and integrate

once with respect to Y to obtain

oW
oY

o2W
oXoY

� oW
oX

o2W

oY 2
¼ o3W

oY 3
ð9Þ

where X = x + 1/2. The boundary layer begins at X = 0.

The boundary conditions relevant to the above equa-

tions are

W ¼ oW
oY

¼ 0 on Y ¼ 0 X P 0 ð10aÞ

hf ¼ hs on Y ¼ 0 0 6 X 6 1 ð10bÞ

ohf
oY

¼ 1

r
ohs
oy

on Y ¼ 0 0 6 X 6 1 ð10cÞ
where r ¼ Re3=4

k is a dimensionless parameter. Since uni-

form stream at ambient temperature is passing through

the inlet slot, appropriate conditions at entry are

oW
oY

¼ 1 at X ¼ 0 ð11aÞ

hf ¼ 0 as X ¼ 0 ð11bÞ

To evaluate the analytical solution, we transform the

basic Eqs. (9)–(11b) using similarity variable of Glauert

[10]

W ¼ X 1=4F ðX ; fÞ; f ¼ Y

4X 3=4
; hfðX ; Y Þ ¼ GðX ; fÞ

ð12Þ

Eqs. (9) and (8c) are reduced to

F 000 þ 2F 02 þ FF 00 ¼ 4X F 0 oF
0

oX
� F 00 oF

oX

� �
ð13aÞ

G00

Pr
þ FG0 ¼ 4X F 0 oG

oX
� G0 oF

oX

� �
ð13bÞ

where the prime denotes differentiation with respect to f.
The boundary conditions in terms of F and G are

F ¼ F 0 ¼ 0 on f ¼ 0 ð14aÞ

hs ¼ G on f ¼ 0 ð14bÞ

ohs
oy

¼ 1

4X 3=4
rG0 on f ¼ 0 ð14cÞ

F 0 ! 0; G ! 0 as f ! 1 ð14dÞ

Let X! 0, and we arrive at the ordinary differential

equations

F 000 þ 2F 02 þ FF 00 ¼ 0 ð15aÞ

G00

Pr
þ FG0 ¼ 0 ð15bÞ

subject to

F ¼ F 0 ¼ 0 on f ¼ 0 ð16aÞ

F 0 ! 0; G ! 0 as f ! 1 ð16bÞ

with the Eq. (14b) replaced as

G ¼ h0 on f ¼ 0 ð16cÞ

It is observed that the continuity of heat flux at inter-

face at X = 0, further the canonical substitution

G ¼ h0 bG the Eq. (14c) becomes

ohs
oy

¼ 1

4X 3=4
rh0 bG 0

ð0Þ ð17Þ

The heat flux has singularity at X ! 0. We remove it

using plane polar coordinates (r,/) as follows,

X ¼ r cos/ y ¼ r sin/
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The boundary conditions (4d) and (17) become,

ohs
o/

¼ 0 on / ¼ � p
2

ð18aÞ

ohs
o/

¼ 1

4
rh0 bG0

ð0Þr1=4 on / ¼ 0 ð18bÞ

A harmonic function which satisfies these boundary

condition is

ĥsðr;/Þ ¼ Ar1=4 sin
/
2

ð19Þ

where

A ¼ � 1ffiffiffi
2

p rh0 bG0
ð0Þ ð20Þ

The singularity at r = 0 is removed by defining

hs ¼ ĥs þ h�s . So h�s satisfies

r2h�s ¼ 0 ð21Þ

subject to

h�s ¼ h0 bG � ĥs y ¼ 0 0 6 X 6 1 ð22aÞ

oh�s
oy

¼ rh0 bG 0

4X 3=4
� oĥs

oy
on y ¼ 0 0 6 X 6 1 ð22bÞ

oh�s
oX

¼ 0 on X ¼ 0 � k 6 y 6 0 ð22cÞ

oh�s
oX

¼ � oĥs
oy

on X ¼ 1 � k 6 y 6 0 ð22dÞ

h�s ¼ 1� ĥs on y ¼ �k 0 6 X 6 1 ð22eÞ

Case II: For the case h0 = 0, the similarity variables

have small changes as follows

W ¼ X 1=4F ðX ; fÞ; hf ¼ X 3=4GðX ; fÞ; f ¼ Y

4X 3=4
ð23Þ

The basic governing equations become

F 000 þ 2F 02 þ FF 00 ¼ 4X F 0 oF
0

oX
� F 00 oF

oX

� �
ð24aÞ

G00

Pr
þ FG0 � 3F 0G ¼ 4X F 0 oG

oX
� G0 oF

oX

� �
ð24bÞ

subject to the boundary conditions for 0 6 X 6 1

F ¼ F 0 ¼ 0 on f ¼ 0 ð25aÞ

hs ¼ X 3=4G on f ¼ 0 ð25bÞ

ohs
oy

¼ rG0

4X 3=4
on f ¼ 0 ð25cÞ

F 0 ! 0; G ! 0 as f ! 1 ð25dÞ
Let X! 0. Eqs. (24a) and (24b) become

F 000 þ FF 00 þ 2F 02 ¼ 0 ð26aÞ

G00

Pr
þ FG0 � 3F 0G ¼ 0 ð26bÞ

subject to

F ¼ F 0 ¼ 0 on f ¼ 0 ð27aÞ

F 0 ! 0; G ! 0 as f ! 1 ð27bÞ

Eqs. (26a) and (26b) are same as the expressions

given by Schwarz and Caswell [11].

An extra boundary condition is availed for being

canonical forms G ¼ QbG as solutions to above equa-

tions. The unknown constant Q can be found from the

continuity of heat flux at Y = 0 from the solution of hs.
Now the boundary conditions are

bG 0
ð0Þ ¼ �1 ð28aÞ

hs ¼ X 3=4QbG on y ¼ 0 0 6 X 6 1 ð28bÞ

ohs
oy

¼ 1

4
rbG 0

Q on y ¼ �k 0 6 X 6 1 ð28cÞ

hs ¼ 1 on y ¼ 0 0 6 X 6 1 ð28dÞ

ohs
oX

¼ 0 on X ¼ 1; 0 � k 6 y 6 0 ð28eÞ
Pr � 1

For lower Prandtl number the thermal boundary

layer thickness is higher than viscous boundary layer.

According to this, change in scaling is done in y coordi-

nate only and is given by,

y ¼ Pr�1Re�3=4Y

The boundary layer equations for fluid field are now

oW
oY

o2W
oY oX

� oW
oX

o2W

oY 2
¼ 0 ð29aÞ

oW
oY

ohf
oX

� oW
oX

ohf
oY

¼ o2hf
oY 2

ð29bÞ

From the above, one obtains

W � Y ð30aÞ

ohf
oX

¼ o2hf
oY 2

ð30bÞ

subject to

hf ¼ hs on Y ¼ 0 0 6 X 6 1 ð31aÞ
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ohs
oy

¼ r
ohf
oY

on Y ¼ 0 0 6 X 6 1 ð31bÞ

hf ! 0 as Y ! 1 ð31cÞ

hf ¼ 0 at X ¼ 0 ð31dÞ

where r ¼ Pr Re3=4

k . While considering h0 > 0, the disconti-

nuity exists when h0 > 0 at X = 0, Y = 0, which is over-

come by coordinate transformation as given below.

g ¼ Y

X 1=2
; S ¼ X 1=2 ð32Þ

From Eqs. (29b) and (30b),

o2hf
og2

¼ 1

2
S
ohf
oS

� g
ohf
og

� �
ð33Þ

subject to

hs ¼ hf on g ¼ 0 0 6 S 6 1 ð34aÞ

1

r
ohs
oy

¼ 1

S
ohf
og

on g ¼ 0 0 6 S 6 1 ð34bÞ

hf ! 0 as g ! 1 ð34cÞ

Now Eq. (31d) is replaced by considering the limits of

Eqs. (33), (34a)–(34c) and let S! 0, one obtains an

ordinary differential equation

o2hf
og2

þ g
2

ohf
og

¼ 0 ð35Þ

subject to

hf ! 0 as g ! 1 ð36aÞ

hf ¼ 0 as g ¼ 0 ð36bÞ

which leads to solution

hf ¼ h0 erfc
g
2

� �
ð37Þ

The erfc(X) denotes the complementary error func-

tion defined by erfc ðX Þ ¼ 2ffiffi
p

p
R1
X e�s2 ds. Subsequently,

one arrives at

ohs
oy

� rh0ffiffiffiffiffiffiffi
pX

p on y ¼ 0 as X ! 0 ð38Þ

By analogy with Eqs. (17) and (20), one should take

A ¼ 1ffiffiffiffiffiffi
2p

p rh0 ð39Þ

When h0 = 0, there is no singularity at X = 0, Y = 0.

Considering the solid slab, it is assumed that the axial

conduction is negligible compared with normal direction

and thus,

o2hs
oy2

¼ 0 ð40Þ
After integrating, one obtains

hsðX ; yÞ ¼
hbðX Þ � 1

k
y þ hbðX Þ ð41Þ

which leads to Eq. (30b) subject to Eqs. (31c) and (31d).

The normal direction temperature gradients are bal-

anced at interface, and

ohf
oY

¼ sðhf � 1Þ ð42Þ

where s = k/(kPrRe3/4).
With reference to Carslaw and Jaeger [19], the solu-

tion for hf for 0 6 X 6 1 can be written as

hfðX ; Y Þ ¼ erfc
g
2

� �
� eðsYþs2X Þ erfc

g
2
þ s

ffiffiffiffi
X

p� �
ð43Þ

Setting Y = 0, the interface temperature is given by,

hb ¼ 1� es
2X erfc ðs

ffiffiffiffi
X

p
Þ ð44Þ
2.1. Quasi-two-dimensional analogue

To find out the temperature distribution in solid wall,

the boundary condition at interface is needed. So the

average conjugate boundary temperature and the aver-

age Nusselt number are evaluated. The average conju-

gate boundary temperature, �hb is defined as

�hb ¼
Z 1

0

hbðX ; 0ÞdX ð45Þ

Averaging (41) over 0 6 X 6 1 gives

hsðyÞ ¼
�hb � 1

k
y þ �hb ð46Þ

Integrating Eq. (14c) over 0 6 X 6 1 and using Eq.

(46), one obtains

k
k
ð�hb � 1Þ ¼ Re3=4�hb bG0

ð0Þ ð47Þ

where bG0
ð0Þ depends on Pr only. For large value of Pr,bG 0

ð0Þ are evaluated using Simpson�s one-third rule

numerical integration and approximated value arrived

at by least square method as given below.

G0ð0Þ ¼ 0.3236Pr1=3 ð48Þ

Rearranging Eq. (47)

�hb ¼
1

1þ l
ð49Þ

where

l ¼ k
k
Pr1=3Re3=4

3.09
ð50Þ

From (4c) and averaging (41) over 0 6 X 6 1, the

average Nusselt number is given by

Nu ¼ k
k

l
ð1þ lÞ ð51Þ
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The case for Pr � 1 proceeds in a similar way except

in place of Eq. (47), the expression is given by

kð�hb � 1Þ
k

¼ 2ffiffiffi
p

p PrRe3=4�hb ð52Þ

hb and Nu are same as above except in place of Eq. (50),

l, is given by

l ¼ 2ffiffiffi
p

p kPrRe3=4

k
ð53Þ

Since the temperature at interface is non-uniform and

the temperature profiles are self-preserving

hbðxÞ ¼ v xþ 1

2

� �c �1

2
6 x 6

1

2
ð54Þ

The value of �c� is obtained from Schwarz and Cas-

well [11] and �v� is constant flux given by

v
Z 1=2

�1=2

xþ 1

2

� �c

dx ¼ �hb ð55Þ

With known �hb and v,hb(X) can be found. Now the

Dirchlet problem for hs subject to Eqs. (4d) and (4e) and

hs ¼ hbðxÞ on y ¼ 0
�1

2
6 x 6

1

2
ð56Þ

gives a series form of solution [16]

hsðx; yÞ ¼
�y
k

þ 2ðcþ 1Þ�hb
X1
n¼1

In
sinh npðy þ kÞ

sinh npk

� cos np xþ 1

2

� �
ð57Þ

where, In ¼
R 1

0
xc cos npxdx.

The heat flux at the conjugate boundary is then

ohs
oy

� �
y¼0

¼ �1

y
þ 2ðcþ 1Þ�hbp

X1
n¼1

In

� coth npk cos np xþ 1

2

� �
ð58Þ
3. Numerical solution

The unsteady state stream function-vorticity equa-

tion governing the incompressible laminar flow in non-

dimensional form are (after dropping the hats for the

variable)

Stream function equation

r2w ¼ �x ð59aÞ

Vorticity equation

ox
ot

þ oðuxÞ
ox

þ oðvxÞ
oy

¼ 1

Re
r2x ð59bÞ
Energy equation

ohf
ot

þ oðuhfÞ
ox

þ oðvhfÞ
oy

¼ 1

RePr
r2hf ð59cÞ

For solid region the energy equation,

ohs
ot

� 1

RePr
r2hs ¼ 0 ð59dÞ

where

u ¼ ow
oy

; v ¼ � ow
ox

; Re ¼ h�u
m
; Pr ¼ m

a

The following non-dimensional variables are used for

Eqs. (59a)–(59d).

x̂ ¼ x
h
; ŷ ¼ y

h
; û ¼ u

�u
; v̂ ¼ v

�u
; ŵ ¼ w

h�u
;

x̂ ¼ hx
�u

; ĥ ¼ T � T1

T1 � T w

; t̂ ¼ t
h=�u

:

The energy equation in fluid regime and solid regime

are solved simultaneously. The slab energy equation is

written in transient non-dimensionalised form. The

point to note here is that the second term (Eq. (59d))

contains Re and Pr. They appear because of the type

of non-dimensionalisation. Similar form of equation

has been given by Chiu et al. [7].

The computational domain considered here is clus-

tered Cartesian grids. For unit length, the grid space at

ith node is given by the expression [20],

xi ¼
i

imax

� j
h
sin

ih
imax

� �� �
ð60Þ

h = 2p stretches both end of the domain whereas h = p
clusters more grid points near one end of the domain.

j varies between 0 and 1. When it approaches 1 more

points fall near the end.

The unsteady vorticity transport Eq. (59b) in time is

solved by alternate direction implicit scheme (ADI). The

central differencing scheme is followed for both the con-

vective as well as the diffusive terms. It is first-order

accurate in time and second-order accurate in space

O(Dt,Dx2,Dy2), and is unconditionally stable. The Pois-

son Eq. (59a) is solved explicitly by five point Gauss–Sei-

del methods. Constant time step 0.001 is used for the

entire calculation. It has been observed that for coarse

grids, larger time step can be used whereas for fine grids,

the solution diverges with large time step. While select-

ing k, time step also needs to be considered. The maxi-

mum vorticity error behavior is complicated as

explained by Roache [21]. While marching in time for

the solution, it has been observed that the maximum

vorticity error gradually decreases. It then increases

drastically finally decreases asymptotically leading to

steady-state solution. The convergence criteria to be

set in such a way that it should not terminate at false

stage. At steady state, the error reaches the asymptotic
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behavior. Here it is set as sum of vorticity error reduced

to either the convergence criteria e or large total time.Ximax ;jmax

i;j¼1

ðxtþDt
i;j � xt

i;jÞ < e ð61Þ

Comini et al. [22] used low Re steady-state solution as

initial guess value for high Re flow for stream function

and vorticity. Thom�s vorticity condition has been used

to obtain the wall vorticity as given below.

xw ¼ � 2ðwwþ1 � wwÞ
Dn2

ð62Þ

where Dn is the grid space normal to the wall. It has been

shown by Napolitano et al. [23] and Huang and Wetton

[24] that convergence in the boundary vorticity is actually

second-order for steady problems and for time-depen-

dent problems when t > 0. Roache [21] has reported that

for a Blausius boundary-layer profile, numerical test

verify that this first-order form is more accurate than

second-order form.

The wall jet consists of an inner region and an outer

region. It is a combination of boundary layer flow over

flat plate at inner region and plane free jet at outer re-

gion [25]. The velocity profile has a point of inflexion.

The surrounding medium of wall jet may be quiescent

or co-flow or counter-flow depending upon the applica-

tions. In the present case, the surrounding is considered

to be quiescent.

The inlet slot height h = 0.5 is assumed. At the bot-

tom wall and the left side wall, constant stream lines

are assumed based on inlet flow. At the outlet in the

downstream direction, stream-wise gradients are as-

sumed to be zero. At the entrainment boundary, normal

velocity gradient is zero [26]. The detailed boundary

conditions are given below (Fig. 1(b)).

at AE; uðyÞ ¼ 12y � 24y2; wðyÞ ¼ 6y2 � 8y3

xðyÞ ¼ 48y � 12; ð63aÞ

along ED; u ¼ v ¼ 0; w ¼ 0.50; x ¼ � 2ww � wwþ1

Dx2

ð63bÞ

along AB; u ¼ v ¼ 0; w ¼ 0; x ¼ 2wwþ1

Dy2
ð63cÞ

along BC;
ou
ox

¼ 0;
ov
ox

¼ 0 ð63dÞ

o2w
ox2

¼ 0;
ox
ox

¼ 0 ð63eÞ

along CD;
ou
oy

¼ 0 ð63fÞ

along AF; BG;
ohs
ox

¼ 0 ð63gÞ
along FG; hs ¼ 1 ð63hÞ

along CD; hf ¼ 0 ð63iÞ

along DE; BC;
ohf
ox

¼ 0 ð63jÞ
3.1. Interface boundary condition

Energy Eq. (59c) in the fluid is recast and written as

ohf
ot

¼ � u
ohf
ox

þ v
ohf
oy

� �
þ 1

RePr
r2hf ð64Þ

The energy equation in the solid (59d) is recast and

written as

ohs
ot

¼ 1

RePr
o
2hs
ox2

þ o
2hs
oy2

� �
ð65Þ

The conjugate boundary conditions are

ks
ohs
oy

� �
y¼0

¼ kf
ohf
oy

� �
y¼0

and

hf ¼ hs at interface y ¼ 0; 0 < x 6 40 ð66Þ

From Taylor series expansion the flux gradients are

evaluated and substituted in Eqs. (64)–(66). Simplifying,

the conjugate interface temperature at next time step is,

htþDt
i;j ¼ hti;j þ

2Dt
RePrðDyf þ kDysÞ

� 1

2
ðDyf þ kDysÞ

hf ;iþ1;j � 2hf ;i;j þ hf ;i�1;j

Dx2

� ��

�k
hs;i;j � hs;i;j�1

Dys
þ hf ;i;jþ1 � hf ;i;j

Dyf

�t

ð67Þ

The convergence criteria is set as sum of error from

all interior points is less than 10�6.

Ximax ;jmax

i;j¼1

jðhtþDt
i;j � hti;jÞjs;f < e ð68Þ
3.2. Grid independence study

The computational domain used has a size of 40

times the slot height in downstream direction and 20

times slot height in normal direction. To ensure that

the parabolic inlet velocity profile falls exactly on the

slot height, uniform grid points are used near the wall

up to the slot height and beyond slot height clustered

grids are used. A series of grid independence study has

been done to find the optimum grid points in both direc-

tions. In x-direction the following grid systems are con-

sidered 75 · 49, 101 · 49, 125 · 49 and found that the

average Nu variation is less than 1%, among the

101 · 49 grid points with 125 · 49. Further in y-direction

101 · 43, 101 · 49, 101 · 59, 101 · 67, 101 · 77 and



Fig. 2. Grid independence for y-direction grids: Re = 500,

Pr = 1.4.
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101 · 101 grid systems are tested (Fig. 2). It is concluded

that the grid refinement level 5 (101 · 77) will be used for

the entire calculations. In the downstream direction the

clustering function used for slab is same as that of the

fluid regime whereas uniform grids are used in the y-

direction for both cases k = 0.25 and k = 1. Typical com-

putational grids are shown in Fig. 3(a)–(c).

3.3. Validation of code

To validate the developed code, two-dimensional lid-

driven square-cavity flow problem [27] and the back-

ward-facing flow problem [28,29] have been solved.

Excellent agreement has been obtained with the bench-

mark solutions reported in the above references. The

laminar plane wall jet problem then has been solved

and the computed velocity profiles are compared with

the similarity solutions of Glauert [10] and the experi-
Fig. 3. Computational domain: (a) grids in the fluid regime (101 · 77, j
in the slab regime (101 · 21, k = 1.0).
mental results of Quintana et al. [15] in a similar way

as represented by Seidel [16] (Fig. 4(a)). It is observed

that at different downstream locations x/h, a good agree-

ment amongst them has been obtained. The non-conju-

gate heat transfer case has been solved for Pr = 1.4 and

100 and compared in a similar way for five downstream

locations (Fig. 4(b) and (c)).
4. Results and discussion

The present study is focused on finding a closed form

relation for forced convection laminar plane wall jet as

conjugate case and comparing the analytical results with

numerical results. Four non-dimensional parameters

(Re,Pr,k,k) are considered for analysis. Higher comple-

mentary error function and exponential function values

are evaluated using Maple 7.00 software [30]. For

Pr � 1, it is approximated as Pr = 0.01 and for

Pr P 1 it is approximated as Pr = 100. Results are eval-

uated for aspect ratios, k = 0.25 and k = 1, whereas ther-

mal conductivity ratios are taken as k = 1, 2, 5 and 20

following Vynnycky et al. [6]. The maximum Re consid-

ered here for the study is 700, after which transition is

expected [17].

For Figs. 6 and 7, different symbols are used to rep-

resent Nu and hb obtained by analytical results and dif-

ferent line patterns are used to represent the numerical

results. For Fig. 8, the style is reversed.

The slab temperature contours are shown in Fig.

5(a)–(h). Results are presented for Re(= 500) case. Low

Pr(= 0.01) and high Pr(= 100) cases are considered with

k = 1 and k = 20. For Pr = 0.01 and k = 1 (Fig. 5(a)),

more temperature drop occurs near the inlet, than in

the downstream locations. The nature of the isotherms

shows that there are heat fluxes in the negative longitu-

dinal and transverse directions near the inlet. However,

there is no longitudinal variation of temperature in the

downstream location signifying that only transverse var-

iation exists. With the increases in conductivity ratio k,
= 0.7), (b) grids in the slab regime (101 · 21, k = 0.25), (c) grids



Fig. 4. Comparison of results with similarity solution for Re = 500: (a) comparison of horizontal velocity profile, (b) comparison of

temperature profile, Pr = 1.4, (c) comparison of temperature profile, Pr = 100.

P. Rajesh Kanna, M.K. Das / International Journal of Heat and Mass Transfer 48 (2005) 2896–2910 2905
heat transfer increases across the slab and the gradient in

normal direction is larger than axial direction (Fig.

5(b)), which agrees with our assumption about the con-

ductivity of the slab. It is worthwhile to remember that if

k is larger, it behaves like an isothermal slab. At high Pr,

a thin thermal boundary layer develops over the inter-

face. Most of the temperature drop occurs across the so-

lid for both the cases. That is why the isotherm in the

slab near the interface (Fig. 5(c) and (d)) has a smaller

value compared to Fig. 5(a) and (b). At high Pr, the con-

tours are less variant in the downstream direction. In

other words, the temperature gradient in the longitudi-

nal direction is much smaller than that in the transverse

direction. The slab is behaving like one-dimensional heat

conduction in y-direction. The isotherm plots for aspect

ratio k = 1 are shown in Fig. 5(e)–(h). For low Pr case

(Fig. 5(e) and (f)), the two-dimensionality nature of

the isotherms are observed. However, in the high Pr case

(Fig. 5(g) and (h)), this nature is almost absent except a

small region in the top-left corner.

The variations of the local Nu are shown in Fig. 6(a)–

(f) for the parameters Re = 500, Pr=0.01,100, k =
0.25,1.0 and for a range of k values lying between, and

including, those used for Fig. 5. The numerically com-

puted values are given for these ranges whereas the

semi-analytic results are plotted for those cases where

the computations are possible. At leading edge, due to

large thermal gradient, Nu is greater than the rest

of the length. Entrainment also causes this large gradi-

ent. The Nu comparison showed good agreement be-

tween the two methods, Fig. 6(a)–(d). Since the viscous

boundary layers are dominant for high Pr fluid, the heat

transfer is nearly one-dimensional (Fig. 5(c), (d), (g) and

(h)) and Nu (numerical) is constant except near the lead-

ing edge. The approximation of constant-flux is expected

to provide a reasonable result for PrP 1 provided k < 2

[6]. However, as shown in Fig. 6(e)–(f), there are some

discrepancies which need further investigation.

Fig. 7(a)–(d) show the non-dimensional conjugate

boundary temperature for different parameters. The val-

ues considered are: Re = 500, Pr = 0.01 and 100,

k = 0.25 and 1.0, k = 1, 2, 5 and 20. For Pr � 1, hb is

evaluated analytically from Eq. (44) which is a closed-

form relation. The analytical results are found to be in



Fig. 5. Isotherm patterns within the solid slab for various parameters by numerical simulations: (a) Re = 500, Pr = 0.01, k = 1,

k = 0.25, (b) Re = 500, Pr = 0.01, k = 20, k = 0.25, (c) Re = 500, Pr = 100.0, k = 1, k = 0.25, (d) Re = 500, Pr = 100.0, k = 20, k = 0.25,

(e) Re = 500, Pr = 0.01, k = 1, k = 1.0, (f) Re = 500, Pr = 0.01, k = 20, k = 1.0, (g) Re = 500, Pr = 100.0, k = 1, k = 1.0, (h) Re = 500,

Pr = 100.0, k = 20, k = 1.0.
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very good agreement with the numerical results (Fig.

7(a) and (b)). There is some discrepancy between the

analytical and computed profiles near the leading edge.

It has been observed that near the inlet, the computed

velocity profile differ from the similarity velocity profile

due to the entrainment effect. So the discrepancy for hb
profiles may be attributed to the above reason and the

assumptions in employing the boundary conditions

(Eqs. (11a) and (11b)) for the starting of the boundary

layer [6]. For high Pr fluid (Fig. 7(c) and (d)), hb is line-
arly varying at leading edge. In this case, thermal bound-
ary layer thickness is smaller than viscous boundary

layer. The predicted value is closer to the numerical

value at the downstream locations whereas there is some

discrepancy near the leading edge. hb, which is related to

hs by the uniqueness property of the Dirichlet problem,

is calculated by the constant-flux approximation (Eq.

(54)). The discrepancy at leading edge may be due to

the presence of two-dimensionality of heat flux as shown

by the isotherms (Fig. 5(c), (d), (g) and (h)).

Finally average Nusselt number dependency with Re

and the comparisons with the predicted results have



Fig. 6. Local Nusselt number (Nu) for different parameters: (a) Re = 500, Pr = 0.01, k = 0.25, (b) Re = 500, Pr = 0.01, k = 0.25,

(c) Re = 500, Pr = 0.01, k = 1.0, (d) Re = 500, Pr = 0.01, k = 1.0, (e) Re = 500, Pr = 100.0, k = 0.25, (f) Re = 500, Pr = 100.0, k = 1.0.

P. Rajesh Kanna, M.K. Das / International Journal of Heat and Mass Transfer 48 (2005) 2896–2910 2907
been presented in (Fig. 8(a)–(d)). Average Nusselt num-

ber is expressed in terms of l as given in Eq. (51). For

low Pr( = 0.01), there is a good agreement between the

analytical and computed results (Fig. 8(a)–(b)) except
at k = 20, Pr = 0.01, k = 1.0 (Fig. 8(b)). It is found that

higher aspect ratio reduces average Nu. Boundary layer

region becomes thinner at a higher Re. As expected,

higher Re leads to higher Nu for the same k and k values.



Fig. 7. Conjugate interface temperature (hb) for various parameters: (a) Re = 500, Pr = 0.01, k = 0.25, (b) Re = 500, Pr = 0.01, k = 1.0,

(c) Re = 500, Pr = 100.0, k = 0.25, (d) Re = 500, Pr = 100.0, k = 1.0.
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The difference in local Nu as discussed earlier is reflected

in the average Nusselt number for high Pr. The analyt-

ical results are not matching with the numerical results

for k > 1 which needs further investigation.
5. Conclusions

In the present work, two-dimensional laminar incom-

pressible plane wall jet heat transfer problem has been

solved analytically as well as numerically for conjugate

case. Four non-dimensional parameters (Re,Pr,k,k)
are considered for analysis. Closed-form solutions have

been found for local Nusselt number, conjugate bound-

ary interface temperature and average Nusselt number.
For Pr � 1, heat flow depends on ðRe3
4Pr=k; kÞ while

for Pr P 1, the relevant parameter set is ðRe3
4Pr

1
3=k; kÞ.

�hb can be reduced, via Eq. (49), to a function of just

one parameter. The governing momentum and energy

equations have been solved by stream function-vorticity

method treating the problem as unsteady and for a wide

range of the above non-dimensional parameters. De-

tailed results have been reported for two cases such as

Pr � 1 and Pr P 1. Average Nusselt number relation

is found in a simple form. Singularity exists at leading

edge of the conducting wall. Good agreement is found

for low Pr model between the two methods. It can be

said that the analytical model performs well for low Pr

fluid. For high Pr fluid, analytical solution of Nusselt

number relation is giving reasonable results for k 6 2

and this needs further investigation.



Fig. 8. Average Nusselt number for various parameters (Nu): (a) Pr = 0.01, k = 0.25, (b) Pr = 0.01, k = 1.0, (c) Pr = 100.0, k = 0.25,

(d) Pr = 100.0, k = 1.0.
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